
Overview of Software and
Simulations

sFun4All

PHENIX framework history
•  Development started in 2002, in use by PHENIX from

2003 on for reconstruction of real and simulated data,
embedding and analysis

•  Needed to get many subsystems who developed their code
independently and with no real coordination under one
umbrella

•  Development driven by reconstruction and analysis needs
(plus the urgent need to process incoming data)

•  KISS + Modularity key to be able to evolve and adapt
•  Configured by simple Root macros

It’s a mature product, advantage that it saw data (unlike
starting from scratch where you have sims for a long time)

Structure of Fun4All

That’s all there is to it (8000 lines of code)

Output Managers Input Managers Node Tree(s)

Analysis Modules

DST

Raw Data (PRDF)

Simulated PRDF

Histogram Manager

Root File

DST

Raw Data (PRDF)

HepMC/Oscar

Empty
Calibrations

PostGres DB File

Fun4AllServer You

The Node Tree
•  The Node Tree is at the center of the Phenix software universe (but

it’s more or less invisible to you). It’s the way we organize our data.
•  It is NOT a Root TTree
•  We have 3 different Types of Nodes:

–  PHCompositeNode: contains other Nodes
–  PHDataNode: contains any object
–  PHIODataNode: contains objects which can be written out to DST

•  PHCompositeNodes and PHIODataNodes can be saved to a DST and
read back

•  This DST contains Root TTrees, the node structure is saved in the
branch names. Due to Roots limitations not all objects can become
PHIODataNodes (e.g. anything containing BOOST or G4).

•  We currently save 2 Root TTrees in each output file, one contains the
eventwise information, the other the runwise information

•  Input Managers put objects as PHIODataNodes on the node tree,
output managers save selected PHIODataNodes to a file.

•  Fun4All can manage multiple independent node trees

Node Tree under TopNode TOP
TOP (PHCompositeNode)/
 DST (PHCompositeNode)/
 HCALIN (PHCompositeNode)/
 G4HIT_HCALIN (PHIODataNode)
 G4HIT_ABSORBER_HCALIN (PHIODataNode)
 SVTX (PHCompositeNode)/
 SvtxHitMap (PHIODataNode)
 SvtxClusterMap (PHIODataNode)
 SVTX_EVAL (PHCompositeNode)/
 SvtxClusterMap_G4HIT_SVTX_Links (PHIODataNode)
RUN (PHCompositeNode)/
 CYLINDERGEOM_SVTX (PHIODataNode)
 CYLINDERGEOM_SVTXSUPPORT (PHIODataNode)
 CYLINDERGEOM_EMCELECTRONICS_0 (PHIODataNode)
 CYLINDERGEOM_HCALIN_SPT (PHIODataNode)
PAR (PHCompositeNode)/
 SVTX (PHCompositeNode)/
 SvtxBeamSpot (PHIODataNode)

Node Tree for sPHENIX
Print it from the cmd line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

TOP: Top of Default Node Tree,
creation and populating of other
node trees is possible (used for
embedding)

Node Tree under TopNode TOP
TOP (PHCompositeNode)/
 DST (PHCompositeNode)/
 HCALIN (PHCompositeNode)/
 G4HIT_HCALIN (PHIODataNode)
 G4HIT_ABSORBER_HCALIN (PHIODataNode)
 SVTX (PHCompositeNode)/
 SvtxHitMap (PHIODataNode)
 SvtxClusterMap (PHIODataNode)
 SVTX_EVAL (PHCompositeNode)/
 SvtxClusterMap_G4HIT_SVTX_Links (PHIODataNode)
RUN (PHCompositeNode)/
 CYLINDERGEOM_SVTX (PHIODataNode)
 CYLINDERGEOM_SVTXSUPPORT (PHIODataNode)
 CYLINDERGEOM_EMCELECTRONICS_0 (PHIODataNode)
 CYLINDERGEOM_HCALIN_SPT (PHIODataNode)
PAR (PHCompositeNode)/
 SVTX (PHCompositeNode)/
 SvtxBeamSpot (PHIODataNode)

Node Tree for sPHENIX
Print it from the cmd line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

DST and RUN Node: default for I/O
• DST – eventwise
• RUN - runwise

Objects under the DST node are reset after
every event to prevent event mixing. You
can select the objects to be saved in the
output file. Subnodes like SVTX are saved
and restored as well. DST/RUN nodes can
be restored from file under other TopNodes
ROOT restrictions apply:
Objects cannot be added while running to
avoid event mixing

Node Tree under TopNode TOP
TOP (PHCompositeNode)/
 DST (PHCompositeNode)/
 HCALIN (PHCompositeNode)/
 G4HIT_HCALIN (PHIODataNode)
 G4HIT_ABSORBER_HCALIN (PHIODataNode)
 SVTX (PHCompositeNode)/
 SvtxHitMap (PHIODataNode)
 SvtxClusterMap (PHIODataNode)
 SVTX_EVAL (PHCompositeNode)/
 SvtxClusterMap_G4HIT_SVTX_Links (PHIODataNode)
RUN (PHCompositeNode)/
 CYLINDERGEOM_SVTX (PHIODataNode)
 CYLINDERGEOM_SVTXSUPPORT (PHIODataNode)
 CYLINDERGEOM_EMCELECTRONICS_0 (PHIODataNode)
 CYLINDERGEOM_HCALIN_SPT (PHIODataNode)
PAR (PHCompositeNode)/
 SVTX (PHCompositeNode)/
 SvtxBeamSpot (PHIODataNode)

Node Tree for sPHENIX
Print it from the cmd line with
Fun4AllServer *se = Fun4AllServer::instance();
se->Print("NODETREE");

Users can add their own branches.
Resetting the objects (if needed)
is their responsibility.

 Keep it simple - Analysis
Modules

•  Init(PHCompositeNode *topNode): called once when you register
the module with the Fun4AllServer

•  InitRun(PHCompositeNode *topNode): called whenever data from
a new run is encountered

•  Process_event (PHCompositeNode *topNode): called for every
event

•  ResetEvent(PHCompositeNode *topNode): called after each event
is processed so you can clean up leftovers of this event in your code

•  EndRun(const int runnumber): called before the InitRun is called
(caveat the Node tree already contains the data from the first event of
the new run)

•  End(PHCompositeNode *topNode): Last call before we quit

You need to inherit from the SubsysReco Baseclass
(offline/framework/fun4all/SubsysReco.h) which gives the methods

which are called by Fun4All.
 If you don’t implement all of them it’s perfectly fine

If you create another node tree you can tell Fun4All to call your module
with the respective topNode when you register your module

The PHENIX Analysis Taxi

This approach enabled us to develop a system (formerly Analysis
Train but now for single modules) to run modules centrally on
demand relieving the users from dealing with all those batch failure
modes and making sure they got all files. All datasets since 2003
are online available.
Scheme can be adapted to read sPHENIX simulations

What to take from here
•  Fun4All is a well developed mature framework

but not overcomplicated, features are driven by
real processing and analysis needs

•  Standard C++, Root with shared libraries,
configured and run by CINT macros

•  We try to stay away from Root, only used if it is
the best/only solution

•  Writing multiple parallel streams is supported,
events destined for any output stream can be
selected by modules

•  Synchronized parallel reading of input files, no
need to have all objects you want in single file

•  We have a Calibration Database scheme
•  Users have to write analysis code in C++

sPHENIX code history
•  Effort started 4 years ago, the decision was to go with G4 (hadron

calorimeters) and use Fun4All as framework so all development could
concentrate on G4

•  The G4 simulation engine is implemented as an analysis module, the
G4 command line interface is still intact and can be called from the
Root prompt

•  Generic cylinders, boxes and cones available if you want to try
something quick, a “black hole” provides leakage detections

•  Truth information is propagated for evaluation
•  Higher level geometries: spacal (1d/2d projective), inner and outer hcal

with tilted slats, svtx ladders
•  Modular simulation setup – sPHENIX components (SVTX, EMC,

Hcals, passive materials) are put together and configured in root
macros.

•  Code: https://github.com/sPHENIX-Collaboration/coresoftware
•  Used to analyze upcoming Test Beam Data, same framework for real

data and simulations
•  Lessons learned from PHENIX are being applied

G4 program flow in sPHENIX
Fun4AllServer

PHG4Reco

N
ode tree

Interface Detector 1 Construct() ! Geometry

Stepping Action (Hit extraction)

Interface Detector 2 Construct() ! Geometry

Stepping Action (Hit extraction)

G
eant4

Digitisation

Tracking,Clustering

sPHENIX Raw Data

Jet Finding, Upsilons, Photons,…
calls

dataflow

Setup

Event generator (input file, single particle, pythia8)

Example Hcal setup macro
 PHG4InnerHcalSubsystem *hcal;
 hcal = new PHG4InnerHcalSubsystem("HCALIN");
 hcal->set_string_param("material",“SS310");
 hcal->set_int_param("ncross",7);
 hcal->set_int_param("n_scinti_plates",331);
 hcal->set_int_param("n_scinti_tiles",11);
 hcal->set_int_param("light_scint_model",0);
 hcal->set_double_param("scinti_tile_thickness",0.6);
 hcal->SetActive();
 hcal->SuperDetector("HCALIN");
 if (absorberactive) hcal->SetAbsorberActive();
 hcal->OverlapCheck(0);
 g4Reco->registerSubsystem(hcal);

Parameter space scanning made simple
(just to mention this, the actual code in the

detector construction is a LOT more complex)

Hcal parameter space scan

To help us to give an answer to the
question what effects the chosen
tilt angle has on our physics

Geantino Scan in ±100

for different tilt angles

Lesson learned: Avoid library
Interdependencies

Raw Data

DST objects
Reco modules

Simulations

Data Base

Having to load excessive amounts
of libraries to run a subset is “okay”
on rcf with afs client caching but a
deal breaker on the grid

Root based DST analysis

DST analysis with Fun4All

sPHENIX Simulations

Extras:
DB access
Raw Data (lots of fiber)

Revisited sPHENIX library
dependencies: Only load what

you eat

I/O libraries, framework, simulations, raw data handling and DB libraries
cleanly separated ! significantly fewer bytes need to be transported
! we can run simulations easily on the OSG

sPHENIX Virtual machine

Before everyone
queues up for an
rcf account

Try our virtual machine
(Thanks to Martin)

Status and Future plans

•  We have a working software framework
based on 10+ years of experience with
PHENIX

•  Our simulation setup is modular and easily
configurable

•  To get new users up to speed – rather than
extensive documentation - keep examples,
tutorials and cut and paste starters up to date

Backup

Here a more scary geometry
G4VSolid*
PHG4OuterHcalDetector::ConstructSteelPlate(G4LogicalVolume* hcalenvelope)
{
 // calculate steel plate on top of the scinti box. Lower edge is the upper edge of
 // the scintibox + 1/2 the airgap
 double mid_radius = params->inner_radius + (params->outer_radius - params->inner_radius) / 2.;
 // first the lower edge, just like the scinti box, just add the air gap
 // and calculate intersection of edge with inner and outer radius.
 Point_2 p_in_1(mid_radius, 0); // center of lower scintillator
 double angle_mid_scinti = M_PI / 2. + params->tilt_angle / rad;
 double xcoord = params->scinti_gap / 2. * cos(angle_mid_scinti / rad) + mid_radius;
 double ycoord = params->scinti_gap / 2. * sin(angle_mid_scinti / rad) + 0;
 Point_2 p_loweredge(xcoord, ycoord);
 Line_2 s2(p_in_1, p_loweredge); // center vertical
 Line_2 perp = s2.perpendicular(p_loweredge); // that is the lower edge of the steel plate
 Point_2 sc1(params->inner_radius, 0), sc2(0, params->inner_radius), sc3(-params->inner_radius, 0);
 Circle_2 inner_circle(sc1, sc2, sc3);
 vector< CGAL::Object > res;
 CGAL::intersection(inner_circle, perp, std::back_inserter(res));
 Point_2 lowerleft;
 vector< CGAL::Object >::const_iterator iter;
 for (iter = res.begin(); iter != res.end(); ++iter)
 {
 CGAL::Object obj = *iter;
 if (const std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> *point = CGAL::object_cast<std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> >(&obj))

 {
 if (CGAL::to_double(point->first.x()) > 0)
 {
 Point_2 pntmp(CGAL::to_double(point->first.x()), CGAL::to_double(point->first.y()));
 lowerleft = pntmp;
 }
 }

Here a more scary geometry
 }

 else
 {
 cout << "CGAL::Object type not pair..." << endl;
 }

 }
 Point_2 so1(params->outer_radius, 0), so2(0, params->outer_radius), so3(-params->outer_radius, 0);
 Circle_2 outer_circle(so1, so2, so3);
 res.clear(); // just clear the content from the last intersection search
 CGAL::intersection(outer_circle, perp, std::back_inserter(res));
 Point_2 lowerright;
 for (iter = res.begin(); iter != res.end(); ++iter)
 {
 CGAL::Object obj = *iter;
 if (const std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> *point = CGAL::object_cast<std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> >(&obj))

 {
 if (CGAL::to_double(point->first.x()) > CGAL::to_double(p_loweredge.x()))
 {
 Point_2 pntmp(CGAL::to_double(point->first.x()), CGAL::to_double(point->first.y()));
 lowerright = pntmp;
 }
 }

 else
 {
 cout << "CGAL::Object type not pair..." << endl;
 }

 }
 // now we have the lower left and rigth corner, now find the upper edge
 // find the center of the upper scintilator

Here a more scary geometry
double phi_midpoint = 2 * M_PI / params->n_scinti_plates;
 double xmidpoint = cos(phi_midpoint) * mid_radius;
 double ymidpoint = sin(phi_midpoint) * mid_radius;
 // angle of perp line at center of scintillator
 angle_mid_scinti = (M_PI / 2. - phi_midpoint) - (M_PI / 2. + params->tilt_angle / rad);
 double xcoordup = xmidpoint - params->scinti_gap / 2. * sin(angle_mid_scinti / rad);
 double ycoordup = ymidpoint - params->scinti_gap / 2. * cos(angle_mid_scinti / rad);
 Point_2 upperleft;
 Point_2 upperright;
 Point_2 mid_upperscint(xmidpoint, ymidpoint);
 Point_2 p_upperedge(xcoordup, ycoordup);
 {
 Line_2 sup(mid_upperscint, p_upperedge); // center vertical
 Line_2 perp = sup.perpendicular(p_upperedge); // that is the upper edge of the steel plate
 Point_2 sc1(params->inner_radius, 0), sc2(0, params->inner_radius), sc3(-params->inner_radius, 0);
 Circle_2 inner_circle(sc1, sc2, sc3);
 vector< CGAL::Object > res;
 CGAL::intersection(inner_circle, perp, std::back_inserter(res));
 vector< CGAL::Object >::const_iterator iter;
 double pxmax = 0.;
 for (iter = res.begin(); iter != res.end(); ++iter)
 {

 CGAL::Object obj = *iter;
 if (const std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> *point = CGAL::object_cast<std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> >(&obj))
 {
 if (CGAL::to_double(point->first.x()) > pxmax)
 {
 pxmax = CGAL::to_double(point->first.x());
 Point_2 pntmp(CGAL::to_double(point->first.x()), CGAL::to_double(point->first.y()));
 upperleft = pntmp;
 }
 }

Here a more scary geometry
 else
 {
 cout << "CGAL::Object type not pair..." << endl;
 }

 }
 Point_2 so1(params->outer_radius, 0), so2(0, params->outer_radius), so3(-params->outer_radius, 0);
 Circle_2 outer_circle(so1, so2, so3);
 res.clear(); // just clear the content from the last intersection search
 CGAL::intersection(outer_circle, perp, std::back_inserter(res));
 for (iter = res.begin(); iter != res.end(); ++iter)
 {

 CGAL::Object obj = *iter;
 if (const std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> *point = CGAL::object_cast<std::pair<CGAL::Circular_arc_point_2<Circular_k>, unsigned> >(&obj))
 {
 if (CGAL::to_double(point->first.x()) > CGAL::to_double(p_loweredge.x()))
 {
 Point_2 pntmp(CGAL::to_double(point->first.x()), CGAL::to_double(point->first.y()));
 upperright = pntmp;
 }
 }
 else
 {
 cout << "CGAL::Object type not pair..." << endl;
 }

 }
 }
 // the left corners are on a secant with the inner boundary, they need to be shifted
 // to be a tangent at the center
 ShiftSecantToTangent(lowerleft, upperleft, upperright, lowerright);

Here a more scary geometry
G4TwoVector v1(CGAL::to_double(upperleft.x()), CGAL::to_double(upperleft.y()));
 G4TwoVector v2(CGAL::to_double(upperright.x()), CGAL::to_double(upperright.y()));
 G4TwoVector v3(CGAL::to_double(lowerright.x()), CGAL::to_double(lowerright.y()));
 G4TwoVector v4(CGAL::to_double(lowerleft.x()), CGAL::to_double(lowerleft.y()));
 std::vector<G4TwoVector> vertexes;
 vertexes.push_back(v1);
 vertexes.push_back(v2);
 vertexes.push_back(v3);
 vertexes.push_back(v4);
 G4TwoVector zero(0, 0);
 G4VSolid* steel_plate_uncut = new G4ExtrudedSolid("SteelPlateUnCut",

 vertexes,
 params->size_z / 2.0,
 zero, 1.0,
 zero, 1.0);

 G4RotationMatrix *rotm = new G4RotationMatrix();
 rotm->rotateX(-90 * deg);

 // now cut out space for magnet at the ends
 G4VSolid* steel_firstcut_solid = new G4SubtractionSolid("SteelPlateFirstCut",steel_plate_uncut,steel_cutout_for_magnet,rotm,G4ThreeVector(0,0,0));
 // DisplayVolume(steel_plate_uncut, hcalenvelope);
 // DisplayVolume(steel_cutout_for_magnet, hcalenvelope);
 // DisplayVolume(steel_cutout_for_magnet, hcalenvelope,rotm);
 // DisplayVolume(steel_firstcut_solid, hcalenvelope);
 rotm = new G4RotationMatrix();
 rotm->rotateX(90 * deg);
 G4VSolid* steel_cut_solid = new G4SubtractionSolid("SteelPlateCut",steel_firstcut_solid,steel_cutout_for_magnet,rotm,G4ThreeVector(0,0,0));
 // DisplayVolume(steel_cut_solid, hcalenvelope);

 return steel_cut_solid;
}

